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Completeness of tests of local hidden variable theories 

S M Roy and Virendra Singh 
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India 
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Abstract. Quantum mechanically for the Bohm-Aharonov system of two spin-4 particles in 
a singlet state the polarisation correlation parameter is 

P ( i ,  6)lQM = ( U ,  . i a z .  6 )  = - 6 . 6 ,  

For a class of hidden variable theories, including those with P ( i ,  6 )  = -1, we formulate the 
Einstein-Bell locality condition and obtain the following generalisation of Bell's inequality: 
For 1%' = 2, 3 , 4 ,  , , . , 

Here P,, = P(a^,, 6,) and the n, are integers, positive, negative or zero. For P(2,  6 )  = -1, the 
inequalities with n :  = 0 and 1 are shown to be the complete content of locality for N = 3 , 4  
or 5. and not to be so for N z 6.  

1. Introduction 

Bell's theorem (Bell 1964, 1971) that no local (deterministic or stochastic) hidden 
variable theory can reproduce all the experimental predictions of quantum mechanics is 
of fundamental importance. Hence the inequalities in conflict with quantum mechanics 
derived by Bell (1964, 1971) and Clauser et a1 (1969) from Bell's formulation of 
Einstein's locality condition (Einstein 1949) have recently been the subject of extensive 
experimental tests (Freedman 1972, Holt 1973, Holt and Pipkin 1974, Faraci et a1 
1974, Clauser 1976, Fry and Thompson 1976, Bruno er a1 1977, Aspect 1975, Aspect 
and Imbert 1976). We have shown recently that these inequalities do not exhaust the 
predictions of the locality condition and have proposed new experimental tests of 
quantum mechanics against local hidden variable theories (Roy and Singh 1978). 
However, the question of what constitutes a complete set of tests of local hidden 
variable theories has remained unanswered. The present paper answers a part of this 
question. 

Consider the Bohm-Aharonov (Bohm and Aharonov 1957) example of a system of 
two spin-; particles prepared in a state described quantum mechanically as a singlet, in 
which the two particles move in different directions. Two measuring devices measure 
their spin components A (= *l) and B (= 51) along directions a* and 6 respectively. 
Then the mean value P(2,  6) of the product A B  is given quantum mechanically by 

(1) P(2,  &M = (a1 . &a* . 6 )  = -2. 6. 
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Bell (1971) characterises local hidden variable theories as those in which 

(2) 

Here, the initial state is described by hidden variables A with probability distribution 
p ( A ) ;  A(&, A )  and B(6, A )  denote the expectation values of A and B respectively in the 
state A .  The chief locality assumption is that A(B)  does not depend on the setting $(a* )  
of the distant instrument. Further, 

(A(&, A ) ) ’ S  1, (B(6, A))’< 1 (3) 
and 

p ( A )  3 0 ,  5 dA p ( A )  = 1.  

In this paper, following Bell (1964), we make 

B($, A )  = -A($, A ) .  

(4) 

the supplementary assumption 

( 5 )  

The motivation for this assumption is that if the quantum mechanical result is valid at 
least in the case a* = 6, then P(&,a*) = -1 requires that B(6, A )  = -A($, A )  = kl. Our 
assumption ( 5 )  is however weaker than that of Bell (1964) because we also allow 
[A($, A)]’# 1. 

2. Inequalities 

We have 

P l J ~ P ( 6 1 , a * / ) = -  5 d A p ( A ) X , ( A ) X j ( A ) ;  i , j = 1 , 2 , .  . . , N  (6) 

where N is the number of settings of the measuring devices, and 

x , ( h ) = A ( z i ,  A )  ( x i ( A ) ) ’ S  1. (7) 

Let ni ( i  = 1 , 2 ,  . . . , N )  be integers, positive, negative or zero. Then consider 

where 

We seek a lower bound on X ( A )  varying the x i ( A )  in the range -1 to +1. Since X ( A )  is 
linear in each x i ( A ) ,  its minimum is reached when all the x i @ )  lie on the boundary, i.e. 
( x i ( A ) ) ’  = 1. Hence 
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and from equations (4) and (8), for N 3 2, 

Here, for X n, =odd, we have used (E niy i )2a  1 ,  if y l  = *l .  Our final result is the set of 
inequalities (11)  obtained by choosing different sets of values for the integers 
n l ,  n2, , . . , nN. For example, we have, for N = 6 ,  n1  = 2,  n2 = n3 = n4 = n5 = n6 = 1, 

2(p12 + p13 f p14 + PIS + p16) 

+ (p23 +p24 +p25 + p26+p34+p35 fP36+P45 +p46 +p56) 4 (12) 

and for any Na5,  n l  = N - 4 ,  n2= n 3 = .  . . = n ~  = 1, 
N N 

( N - 4 )  1 PI,+ 1 P , , S Z ( N *  - 7 N + 1 4 ) .  
I = 2  1#1<, 

The special cases of ( 1 1 )  with ni = 0 or k l  may be written as follows: For 
M = 2 , 3  , . . . ,  N, 

where q f  = 1 for i = 1 ,2 ,  . . . N, SM = (a1, ( ~ 2 ,  . . . , a ~ )  is an M-tuple of integers chosen 
from 1 , 2 , .  . . N, and X s M  denotes summation over index set SM. Of these, the 
inequalities with even M are actually redundant. Inequalities with M = 2 are implied 
by those with M = 3, and inequalities with even M = 2 4 1 2  2, are implied by those with 
odd M = 21 -I. The inequalities with odd M are independent. For example, for N = 5, 
there are 4 inequalities for each choice of S3, and 10 possible choices of S3 giving 40 
inequalities of M = 3 type; there are 16 inequalities of M = 5 type; thus we have 56 
independent inequalities for N = 5. Of the 4 independent inequalities for each choice 
of S3, two are equivalent to Bell's original inequalities (Bell 1964), 

p(a ,  6) - P ( 6 , 2 ) ] -  P(6,  c*)  s 1. 

The inequalities (14) for odd M conflict with quantum mechanics. For M = 3, 
consider 771a*1,  r&2 and v3a*3 in the same plane with an angle of 2 ~ / 3  between each pair 
of vectors, then the left-hand side of (14) is ;quantum mechanically, violating inequality 
(14). For M = 5, consider 774a*4+ 77& = 0,  and 72a*2,773a*3 in the same configura- 
tion as before; then the left-hand side of (14) equals 5 quantum-mechanically in 
violation of the inequality (14). The higher M inequalities are similarly seen to conflict 
with quantum mechanics. 

To see that the different odd M inequalities constitute independent restrictions on 
the Pii, consider the (non quantum-mechanical) example 

P ( i ,  b*) = -PI&. 6*+p2, p120, p2 3 0. 

M [ p 1  +p2(M - l)] s ( M  - 1)/2' 

All the inequalities for a given odd M are satisfied if and only if 

Setting successively M = 3 , 5 ,  7, . . . we see that each new value of M forbids new 
regions in the pl ,  p z  plane. 

The inequalities (14) were reported earlier by Roy and Singh (1977) and indepen- 
dently by Selleri (1978); their special case 77, = 1 was derived from a different set of 
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assumptions by d’Espagnat (1975). Inequalities (11) with some or all Inil> 1 are 
believed to be new. (See e.g. equations (12), (13)). We also note that the inequalities 
given by us (Roy and Singh 1978) in the general case with A(x, A )  +B(x, A )  f 0 do also 
have a generalisation, corresponding to that given by (11) for the inequalities (14) 
discussed here. 

3. Completeness 

We have shown that the conditions (2)-(5) imply the inequalities (1 1). In particular we 
only used Ixi(A)I S !  which is a weakening of the usual condition Ixi(A)l  = 1. If, however, 
we require P(6,  b )  = -1 for g= 2, i.e. for this one orientation of 6 we demand 
agreement with quantum mechanics, then we must have l x , ( A ) I  = 1. For the rest of this 
section we shall restrict ourselves to this situation. The question of completeness is 
resolved by the following theorem for N G 5. 

Theorem: Given Pi, = -1 and Pij = Pjl( i  f j) where i, i = 1,2, . . . , N for any N G 5 
the complete content of locality is expressed by the inequalities (14). 

Remarks: (i) It follows from this theorem that the inequalities obtained by allowing 
some or all of the lnil to have values larger than 1 are not independent of those obtained 
by taking all ]nil G 1. 

(ii) This theorem is not true for N > 5 in general. A counter example establishing 
this will be given later. Thus for N > 5 we cannot ignore inequalities obtained by taking 
at least some of Ini[ 32. 

Proof: In order to establish the theorem we should be able to construct normalised 
semipositive definite p ( A )  2 0 and / x , ( A ) I  = 1 provided the inequalities (14) are satisfied. 
We now proceed to give this explicit construction. 

Divide the space of A’s into 2N-’ regions D ( A )  where A = O  or a subset of 
{1 ,2 , .  , , N} containing no more than N/2 numbers, and choose 

6 , 5 , x ,  (A  ) x , ( A  ) = x~,Ax~.A,  for A E D ( A ) ,  i <i, 
where 

if i E A  (I: if i& A,  X[.A = 

and 5, are chosen to be *l. D ( A )  consists of D(O), D ( a ) ,  D(a ,  p ) ,  D(a,  p, y ) ,  . . . ,with 
the last D containing ( N  - 1)/2 arguments if N is odd and N/2 arguments if N is even. 
The indices (Y < <. . . run from 1 to N. The number of different sets D with r 
arguments is NC, except when N is even and r = N/2, when the number is iNCNI2. Thus 

X l , O  = 1, X1.a = (1 - 2&u), ~ , , ( ~ , p ,  = (1 -21u)(1 -26,0), etc. 
Writing 

PA = jD(A, dh P ( A )  

and denoting ( x , ( A ) x , ( A ) .  . . x k ( A ) )  for A E D ( A )  by ( x , x , .  . . X ~ ) A  the problem is to find 
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Xi.  

N = 3: Choose 6, = +1  for i = 1 , 2 , 3 .  Solve for the four pA’s from the above four 
equations and obtain 

These pA’s are non-negative due to the M = 3 inequalities in (14). The construction 
(16) thus obeys the locality conditions. 

N = 4: Choose ti = +1 for i = 1 to 4. The 7 conditions (15) do not define the 8pA’S 
uniquely. In terms of a free parameter P 

which is a combination of the pA’s linearly independent from those occurring in 
equation (15), we find, for A = 0, 1 ,2 ,  3 ,4 ,  (121, (13), (23), 

With the choice 
r A  1 

and use of the M = 3 inequalities in (14), all the pA are shown to be non-negative. 
N = 5: Let No = max(N3, N5), where 

then the 56 inequalities (14) simply say that N o s  1. We choose ti to equal the vi  for 
which the maximum No is reached. Then equation (15) is equivalent to the 11 
conditions 

where LY < p ,  a, @ go from 1 to 5 ,  and 

i c j  ; < I  

and (S3LP is the triple not containing (Y and @ (e.g. (&)I2 = (3,4,5)).  The general 
solution for the 16pA’s contains 5 free parameters Pi, i = (1, . . . , 5 ) ;  with 

pi -1 dA(Xi)APAI dA(Xi)A (XIXZX3X4X5)A(Xi)A, 
A 
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If No = N5 we may choose 

16pA = 1 - No, A = 0, 1, . . . 5  ; 16p,p = ( 1 - No) + 4(N0 - Sap),  (Y < P,  (23) 

which satisfy the condition (21). The pa’s are obviously non-negative. 
If NO = N3, we may assume without loss of generality that No = S45. We may choose 

po=p4 = p5 = (1 -N0)/16 

16p1 = (1 -No)  + 4  max[(No- S + S23)+, 2N0- S - C2 - C3] 

16p3 = (1 - No) + 4 min[2No - S - (No - S + S23)+ - (No - S + S d + ,  C3] 

16p2 = 3( 1 -No) + 4(2N0- S )  - 16(p, + p3) 

C, = min(N0 - S14, NO - S I 4 ,  i = 2,3.  (25) 
It is straightforward to verify that the above pA’s are non-negative and satisfy the 
conditions (21). 

We have thus completed the proof for N 6 5. One may be naturally tempted at this 
stage to conjecture that the restriction of inequalities (11) to n,  = 0, *1 may be sufficient 
to express the content of locality for all N. That this is not so is brought out by the 
following counter example for N = 6. Let PI, be equal to P!:’ where 

PIP’ =-& +~( l -~ l f ) (~11+L311)  i , j = l , 2  , . . . ,  6. (26) 

This set of Pl,’s satisfies all the inequalities (1 1) with n, = 0, * 1  but the matrix JIP!:)II is 
not a negative semidefinite matrix and as such has no representation of the form (6). 
This set of Pll’s however does not satisfy the inequalities ( 1  1) with no restriction of n,’s. 
For example 

1 1 6  1 
, < I  2 2 , = 1  4 

n,n,PIY’ = - n l ( n 2 + n 3 + .  . . + n 6 ) s -  n f + - [ ( - ) n l -  +“,-I] 

is incorrect for n l  = 2, n2 = n3 = n4 = n5 = n6 = 1. 
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